segunda-feira, 23 de maio de 2011

RESUMO DE LIGAÇÕES QUÍMICAS


1- Introdução:

É impossível se pensar em átomos como os constituintes básicos da matéria sem se pensar em ligações químicas. Afinal, como podemos explicar que porções tão limitadas de matéria, quanto os átomos, possam formar os corpos com que nos deparamos no mundo macroscópico do dia-a-dia. Também é impossível se falar em ligações químicas sem falarmos em elétrons. Afinal, se átomos vão se unir uns aos outros para originar corpos maiores, nada mais sensato do que pensar que estes átomos entrarão em contato entre si. Quando dois átomos entram em contato, o fazem a través das fronteiras das suas eletrosferas, ou seja, de suas últimas camadas. Isso faz pensar que a última camada de um átomo é a que determina as condições de formação das ligações químicas.

Em 1868, Kekulé e Couper, propuseram a utilização do termo valência para explicar o poder de combinação de um átomo com outros. A valência de um dado elemento é que determina as fórmulas possíveis ou não de compostos formados por ele.

A primeira situação seria entender por que dois ou mais átomos se ligam, formando uma substância simples ou composta. Como, na natureza, os únicos átomos que podem ser encontrados no estado isolado (moléculas monoatômicas) são os gases nobres, logo se pensou que os demais átomos se ligariam entre si tentando alcançar a configuração eletrônica do gás nobre mais próximo deles na tabela periódica. Todos os gases nobres, com exceção do He, possuem 8 elétrons.

Esta maneira de pensar a ligação entre os átomos passou a ser conhecida por Teoria do octeto, e foi proposta por Kossel e Lewis no início do século XX. Baseado nessa idéia, a valência de um átomo passou a ser vista como a quantidade de elétrons que um átomo deveria receber, perder ou compartilhar para tornar sua última camada (camada de valência) igual a do gás nobre de número atômico mais próximo.

As ligações químicas podem ser classificadas em três categorias:

- Iônica ou Eletrovalente

- Covalente ou Molecular

- Metálica



2- Ligações Iônicas:

Como o próprio nome já diz, a ligação iônica ocorre com a formação de íons. A atração entre os átomos que formam o composto é de origem eletrostática. Sempre um dos átomos perde elétrons, enquanto o outro recebe. O átomo mais eletronegativo arranca os elétrons do de menor eletronegatividade. Ocorre entre metais e não metais e entre metais e hidrogênio.
átomo com facilidade para liberar os elétrons da última camada: metal
átomo com facilidade de adicionar elétrons à sua última camada: não metal, semimetais e hidrogênio
Átomos com 1, 2 ou 3 elétrons no último nível de energia → perdem elétrons (+).

Átomos com 4, 5 e 6 elétrons no último nível de energia → ganham elétrons (-).


Ex.: sódio (11Na) e o cloro (17Cl)

Na → K = 2 / L = 8 / M = 1

Cl → K = 2 / L = 8 / M = 7

Na+1  + Cl-1  NaCl

O sódio possuía inicialmente 11 prótons e 11 elétrons. Após a ligação, a quantidade de prótons não se altera e a de elétrons passa a ser 10. O cloro que inicialmente possuía 17 prótons e 17 elétrons, tem sua quantidade de elétrons aumentada de uma unidade após a ligação. Com isso o sódio se torna um íon de carga 1+ e o cloro 1-. A força que mantém os dois átomos unidos é de atração elétrica, ou seja, uma ligação muito forte. Como foram utilizados um átomo de cada tipo, a fórmula do composto será NaCl.

 




3- Ligação Covalente:

A existência de algumas moléculas não pode ser explicada simplesmente através da ligação covalente simples. Para estes casos foi formulada a teoria da ligação covalente coordenada. Neste tipo de ligação, um dos átomos que já estiver com última camada completa entra com os dois elétrons do par compartilhado. Este par de elétrons apresenta as mesmas características do da ligação covalente simples, a única diferença é a origem dos elétrons, que é somente um dos átomos participantes da ligação. Os elétrons do par passam a pertencer a ambos os átomos participantes. A ligação covalente coordenada é representada por uma seta que se origina no átomo doador e termina no átomo receptor.

Ex.1: 7N + 7N

N → K = 2 / L =  5

N → K = 2 / L = 5



Ex.2:  16S + 8O

S → K = 2 / L = 8 / M = 6
O → K = 2 / L = 6

Todos os dois átomos tem a tendência de ganhar elétrons, logo compartilham eles.


Observação: No entanto, esta molécula ainda pode incorporar ainda um ou dois átomos de oxigênio. Tal fato só pode ser explicado se o enxofre utilizar um ou dois pares de elétrons não envolvidos em ligações para formar novas ligações com o oxigênio.


 



 

 4- Ligação Metálica:

É o tipo de ligação que ocorre entre os átomos de metais. Os átomos dos elementos metálicos apresentam forte tendência a doarem seus elétrons de última camada. Quando muitos destes átomos estão juntos num cristal metálico, estes perdem seus elétrons da última camada. Forma-se então uma rede ordenada de íons positivos mergulhada num mar de elétrons em movimento aleatório. Se aplicarmos um campo elétrico a um metal, orientamos o movimento dos elétrons numa direção preferencial, ou seja, geramos uma corrente elétrica.

3 comentários:

  1. Achei excelente o resumo com as animações e vídeos. Fazia tempo que eu não via o Beakman's world. As experiencias são ótimas.Eu recomendo. Parabéns.

    ResponderExcluir
  2. obg!Muito bom!Ajudou muito no meu trab digitado de Quim!Recomendo!

    ResponderExcluir